Clean water coming from an old pipeline

Water technologies

Water management and water treatment is confronted with new challenges. The pollution of the past as well as climate change have a direct impact on the natural sources of water, surface waters and groundwater. Insufficiently treated wastewater that is discharged into bodies of water results in long-term damage that then has to be tackled later on at great expense. The pollution of rivers, lakes and groundwater with pesticides, mineral oil residues or pharmaceuticals are examples of this.

In the water technologies competence area, the innovation field "Water Technologies and Resource Recovery" therefore  develops concepts, processes and technologies for purifying water and recovering valuable substances from water.

For water management, the innovation field develops comprehensive concepts, e.g. within the framework of the Morgenstadt City Lab. One focus is on international cooperation to develop and adapt solutions for emerging countries (e.g. South Africa, India, Brazil).

For water treatment we develop and optimize biological, electro-oxidative and reductive processes and investigate your wastewater with our AOP test facility.

Furthermore, our focus is on desalination of process water and wastewater and recycling of corresponding acids/alkalis.

Process design is always based on microbiological or process engineering principles and ranges from the planning, commissioning and optimization of laboratory and pilot plants to the planning, construction, commissioning and optimization of innovative demonstration plants in cooperation with our industrial partners.  

Concepts and technologies#

 

Water management and digitization

  • Concepts for semicentralized water infrastructures
  • Morgenstadt City Lab
  • Water reuse
 

Biological wastewater treatment

  • Optimization of municipal and industrial wastewater treatment plants
  • Specific reactor concepts
  • Utilization of wastewater ingredients
 

Desalination

  • Water treatment through recovery of process additives
  • Electrodialysis, capacitive deionization, free-flow electrophoresis, electro-membrane filtration
 

Advanced Oxidation Processes (AOP)

  • Processes for the removal of persistent substances
  • Oxidative degradation of micropollutants
  • Application tests in pilot plants
 

Photolysis

  • Degradation of contaminations with UV light
  • Development of light sources, reactors and processes
 

Electrophysical precipitation

  • Separation of materials that are difficult to fell
  • Substitution of chemical precipitants
  • Emulsion splitting
 

Electro-oxidation and -reduction

  • Degradation by anodic oxidation and/or cathodic reduction
  • Oxidation also via radicals

Advantages and applications of our solutions#

Water management: Optimized water use, water reuse, and integration with energy management

Intelligent concepts for the purification and distribution of water are more in demand than ever. In order to ensure the supply of the various sectors in which we need water (private sector, agriculture, industry), even in times of water scarcity exacerbated by climate change, Fraunhofer IGB relies on semi-centralized water and wastewater management, which is linked to appropriate energy and nutrient management in the sense of the nexus approach. We also take into account geographical and climatic conditions, such as seasonal water shortages in arid and semi-arid regions.

Integrative approach and advantages:

  • Cost-effective water management solutions
  •  Semi-centralized treatment of wastewater streams
  • Resilience through coupling with waste management concepts, energy supply from renewable sources and future-oriented building technology
  • Digitalization with the help of intelligent sensor networks
  • Process and wastewater as a source of raw materials and energy
    • Degradation of organic matter by biological processes
    • Material and energetic utilization of organic load
    • Recovery of nutrients

Applications

We develop water management concepts for rural regions or urban areas (new housing developments, urban districts in need of redevelopment) as well as for leisure resorts, tourist centers and hotel complexes. The system is particularly useful wherever there is no water infrastructure with a sewer network and central sewage treatment plant. Or where the old infrastructure can no longer be adapted to new challenges arising from climate change or the population moving away.
 

 

Possibilities of oxidative and electrolytic technologies: Elimination of micropollutants, precipitation and desalination

In numerous production processes water is used as a solvent or means of conveyance, as cooling water or washing water. Increasing costs for the purification and disposal of wastewater, regional or seasonal shortage of water, and a growing awareness of environmental issues within companies have increased water recycling. Water is used several times and impurities have to be removed selectively. In many cases the currently established processes and systems cannot do the job without adaptation and support from new, selective systems.

The use of oxidative and electrolytic processes for water treatment is one of the main fields of research of Fraunhofer IGB. We work on the improvement of existing processes such as adsorption, filtration, flocculation/precipitation, electrodialysis, homogenization and disinfection as well as on new approaches in process and unit operations. Together with industrial partners, new concepts and technologies are being developed at Fraunhofer IGB also to industrial scale. Water treatment and the circulation of process water can thus be carried out economically and sustainably.

Advantages

With oxidative and electrolytic processes, it is possible to oxidize dissolved contaminants or pollutants that are difficult to break down. In general, electrolytic and oxidative processes have the following advantages:

  • Complete mineralization of pollutants possible
  • Staff savings and increased reliability
  • No increase in salinity, which enables recirculation
  • No disinfection by-products – in particular no halogenated compounds
  • Less handling of hazardous chemical agents
  • Little or no sludge formed
  • Hygienic outflow water
  • Robust process – discharge criteria can be met reliably
  • Available quickly – standby operation possible
  • Suitable for varying quantities and qualities of wastewater

Applications

At present the focus is on industry-oriented studies of landfill leachate and textile effluents. The aim here is to meet the discharge criteria of the communal treatment plants in a cost-effective way. In other projects we have developed new technical solutions for UV treatment and anodic oxidation together with our industrial partners. These projects aim to make the solutions ready for market launch.

Our offer: From development to integration of processes#

Process development

In cooperation with industrial partners, new concepts and technologies for the sustainable treatment and purification of process water for a very wide range of applications are being developed and optimized at Fraunhofer IGB up to industrial scale. Water treatment and the circulation of process water can thus be carried out economically and sustainably.

Process optimization

In many cases the currently established water treatment processes and systems cannot do the job without adaptation and support from new, selective systems. Fraunhofer IGB is therefore working on the further development of existing processes such as adsorption, filtration, flocculation/precipitation, electrodialysis and disinfection as well as on new approaches to processes and components.

System integration

Especially in the case of typical industrial wastewaters with a complex composition, efficient separation of substances is frequently not possible with just one single process stage. By combining and integrating various processes we are able to develop efficient and coordinated solutions, which are optimized in their overall impact as a process chain regarding selectivity and energy efficiency. In this way, results can be achieved that exceed the sum of the results of the individual process stages.